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Advanced data analytics in BEMS: which barriers?

Data Analyst
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Multilevel building energy management system in buildings

Data collection & Data sources

Building operational
Data

Data analytics based energy management system
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Descriptive and predictive analytics: What has happened? What could happen?
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Prescriptive analytics: What should we do?




Predictive analytics: development of advanced prediction models
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Prescriptive analytics: Optimal and adaptive control in buildings

A model predicts plant behavior
in the future on the basis of
predicted disturbances

Optimization

The best control input sequence
is solved

Control intput

The signal at the first timestep is
applied
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Challanges in descriptive analytics for energy and buildings

The mining of fime series data has recently gained high
attention as a way to describe and deeply characterise
typical operational patterns and trends of energy
consumption in buildings.

Time series of building related variables have to be
analyzed with an integrated approach preserving their

association in the time domain.

analytics is
building or

A novel paradigm based on temporal data
needed to characterize dynamics at whole
component level through:

* Sequential and recurrent pattern mining
* Causality analysis

e Time series segmentation and trend analysis
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Time series analytics at different scales

Energy time series analytics at system scale

* Implementation of (FDD) strategies (e.g., AHU).
* Support the optimal operation of chillers

Energy time series analytics at single building scale

* Improve the accuracy of energy consumption forecasting models.

* Provide information for the calibration of simulation models.
* Implementation of (FDD) strategies.

* Energy benchmarking over time.

* Promote active demand response programs.

Energy time series analytics at multiple building scale

Detail of analysis

* Set rules for the automatic classification of new consumers

* Implementing targeted financial demand response programs.

* Better manage the grid operation

* Promote the modification of a load profile

* Fully exploit the benefits of energy management also at micro
grid level.

* Assess the impact of DSM and DR initiatives over time.
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Applications that benefit from time series analytics

Demand profile characterisation Anomalous trend detection
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Demand profile characterization: customers’ classification
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Time series segmentation process
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Managing similarity in time series segmentation

Which algorithm? Which distance? Which data normalization?
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Energy time series analytics at single building/system scale

Data visvalisation and anomalous trend
detection

Objectives

. Characterization of whole building energy consumption
patterns over time (univariate problem);

Development of INFREQUENT PATTERN DETECTION

procedure in quasi real-time;

Enhanced data visualization

Fault detection and Diagnosis in AHU

Objectives

Create a Model-free and Unsupervised methodology for
FAULT DETECTION and DIAGNOSIS in AHU

The methodology has to exploit Temporal Association
Rules Mining to correlate different variables with a time
lag between the events, to consider even inertial effect in
the response (multivariate problem).

Both procedures rely on temporal abstraction as a preprocessing stage for knowledge extraction
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Data visualisation and anomalous trend detection

Building total electrical demand Additional explanatory variables Symbol prediction in each time

g window
/ (e.g., external temperature, internal ez
. ﬁ L temperature, day type, number of T
W T w W W W occupants)

Powaer (kW]

NO start, Sian 500 Start 400, Start 500

12

‘---.-------.-------.-------.-------.--.---. ‘---.-------.-------.--.----.--.----.--.---. o8 08 - ] 08
Time windows Identification Adaptive breakpoints identification o s o
Breakpoinl: B1B2E304 |Adaptive : Equiprobable ”: i I ": | il . ": ] ™

a b oo a = a b oo a e a b o 4 e

_:i%

Classification trees (CART)

0.010

Density

0.003

Anomalies detection and diagnosis

100 200 - 300 "
Electrical Demand [kKWV]

Regression tree (CART)

aSAX algorithm

4EEEEEEENEEEENENEEEEEEENEEENEENESR
4EEEEEEEEEEEEENEEEEEEEEEENENE
4IEEEEEEEEEEENUNEEEENEENEEENEN
4EEEEEEEEEEEEEEEEEEEEEENEENEES

e

L B NN NN NN NN RNENNENRRNMEHMSHMEHRHERHEHMSHEHRIMESHERHSELEHSHNSHSEHRNHMSEHRM;WE.] W E EEEE S S SN NN NN SN NN NN NN N NN NN N NN EEENEEN g
=8 . . d R ': . . R . R R = 247 (kW]
. Time series reduction . = Time series encoding in symbols string : )
: | E . g | | . E 184 [KW]-
. : S y - H-I k : b
e : 2 (Bl o e 1T : s
- é s : - = v ] 1 : _____
= |z = = g e . Lo B HEE = 76 [kW]
= |* - = g 125 B 125f | 1 ! I‘ I | ¢ :
E . E E; 76 . )| Li_r |_E_,' 1_%_,-" = 5 N
= - = ° 1 1 1 :
. . = P 0,0000.0050.0100.0150.02¢ 07-10 07-11 07-12 07-13 = SN $ S
u 3 . N Density Time = SRS n: »
E . . . . . ; ; ; = Diagnostic analysis using energy consumption
. Constant approximation in time windows - i Symbolic aggregate approximation = g‘ y g o . >
’- HEEEEEEEEEEEEE NN N EEE NN EEEEEEEEEEEEEEEEEN .' E NN EEEEEEEE NN N NN NN NN NN NN NN NN '. profrfes of heatrng/COOIIHQ syStem equrpment

Source: Capozzoli A, Piscitelli M S, Brandi S., Grassi D., Chicco G. Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy 2018



Temporal abstraction in univariate time series

Symbol identification with adaptive breakpoints

Time window identification

The optimal number and size of the time windows for 1) The hypothesis of normal distribution is not verified.

piecewise approximated aggregation is evaluated through a
2) The identification of equi-probable symbols on real

regression tree.
distribution results in very narrow ranges for low power
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Temporal abstraction in time series

Temporal abstraction consists in transforming time series from numerical sequences to discrete state sequences by
means of the reduction and the transformation of data.
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In this way the discrete states, called events, or their transaction /sequence could be associated to the observation
of physical phenomena over time



Infrequent pattern recognition and first level diagnostic
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Temporal abstraction in multivariate time series

Sub-hourly aggregation
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Temporal Association Rule Mining (TARM)

In the context of discrete-state-transactions, association
rules can be wused for mining co-occurrences or
implications between events in the time domain that are
frequently associated together.

The output is a set of rules that are used to represent
patterns (if A happens, B will also happen, A is called
antecedent and B is the consequent).

Rules quality metrics

SUPPORT ~

The support of a rule the conditional
is the joint probability probability of the :
of the antecedent and Consequent given the E
consequent antecedent. :
Support(A — B) = P(A, B) Confidence (A — B) = P(B/A)

Co-occurrence
t
X->Y

Event C

t
X-Y

Temporal implication

Sliding window

Var. 1

Var. 2



TARM for Fault detection and diagnosis in AHU

1. In fault detection and diqgnosis, TARM makes it possible Temporal Association Rule n. 48 — system general operation rule
to extract patterns in the time domain representative of =
the relation between disturbances and energy demand . ;
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Conclusions & Final Remarks

Building physics vs data science or data science for
building physics?

In the field of energy and buildings, a robust background in
building physics represents a cornerstone in order to extract
useful and non-trivial knowledge

Rapid executions but ...

The preparation and pre-processing of data represent
complex operations that require very long time and
experience to the analyst (Data pre-processing might take
80% of the total data mining effort)

Smart city: Everything belongs to everyone but nothing
belongs to anybody

In the smart city context data are shared between different
systems and stakeholders. Security and privacy issues are
fundamental aspects to be considered with extreme care.

EMS and Data Analysis = energy saving: is it always
true?

The development of a smart energy management system
if not correctly designed can result in a high cost
investment with incompatible payback.

“In theory, there is no difference between theory and
practice....But, in practice, there is”.

Real world cases of implementation data analytics based
frameworks in BEMS still remain a demanding task

From reactive to predictive energy management in
buildings. A predictive management provides a
scheduled optimisation opportunities which can enable
high level supporting recommendations to be
implemented.
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